For any positive number \(b\) but \(b \ne 1\), $$\large{\log _b}{b^k} = k$$ Example: $${\log _2}{2^5} = 5$$ For any positive number \(b\) but \(b \ne 1\), $$\LARGE{b^{{{\log }_b}k}} = k$$ Example: $$\LARGE{6^{{{\log }_6}3}} = 3$$ Math Topics Laws of Logarithms