Power of a Product Property
Suppose \(a\) and \(b\) are nonzero real numbers and \(x\) and \(y\) are any integers,
$$\large{{\left( {a \cdot b} \right)^x} = {a^x} \cdot {b^x}}$$
Description: To determine the power of a product, apply the exponent to each individual factor. This involves distributing the outer exponent to the exponent of each factor.
Some examples:
$${\left( {5 \cdot 7} \right)^5} = {5^5} \cdot {7^5}$$
$${\left( {{2^x} \cdot {3^y}} \right)^2} = {2^{2x}} \cdot {3^{2y}}$$