Product Property of Logarithms
For positive numbers \(A\), \(B\), and \(b\) but \(b \ne 1\),
$${\log _b}AB = {\log _b}A + {\log _b}B$$
Description: The logarithm of a product is equal to the sum of the logarithms of its factors.
Examples 1:
$${\log _2}3x = {\log _2}3 + {\log _2}x$$
Example 2:
$$\eqalign{
{\log _5}\left( {24} \right) &= {\log _5}\left( {3 \cdot 8} \right) \cr
& = {\log _5}3 + {\log _5}8 \cr} $$
Example 3:
$$\eqalign{
{\log _4}\left( {30} \right) &= {\log _4}\left( {2 \cdot 3 \cdot 5} \right) \cr
& = {\log _4}2 + {\log _4}3 + {\log _4}5 \cr} $$